УДК 544

DOI https://doi.org/10.32782/pcsd-2025-1-6

Андрій СЕЛЕЗЕНЬ

доктор філософії в галузі хімії, старший викладач кафедри хімії та фізики, Національний університет водного господарства та природокористування, вул. Соборна, 11, м. Рівне, Україна, 33028 **ORCID:** 0000-0002-1174-7439

Любомир ГУЛАЙ

доктор хімічних наук, професор, завідувач кафедри неорганічної та фізичної хімії, Волинський національний університет імені Лесі Українки, пр. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0003-3495-5027

Микола МОРОЗ

доктор хімічних наук, професор, завідувач кафедри хімії та фізики, Національний університет водного господарства та природокористування, вул. Соборна, 11, м. Рівне, Україна, 33028 **ORCID:** 0000-0003-1639-4713

Людмила ПІСКАЧ

кандидат хімічних наук, професор, професор кафедри неорганічної та фізичної хімії, Волинський національний університет імені Лесі Українки, пр. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0003-3117-4006

Бібліографічний опис статті: Селезень, А., Гулай, Л., Мороз, М., Піскач, Л. (2025). Взаємодії всистемах Tl₂Se–Zn(Cd,Hg)Se–GeSe₂.*Проблемихіміїтасталогорозвитку*, 1,41–49, doi: https://doi.org/ 10.32782/pcsd-2025-1-6

ВЗАЄМОДІЇ В СИСТЕМАХ Tl,Se-Zn(Cd, Hg)Se-GeSe,

Методами рентгенофазового, диференційно-термічного та мікроструктурного аналізів досліджено характер фізико-хімічної взаємодії в квазіпотрійних системах $Tl_2Se-Zn(Cd, Hg)Se-GeSe_2$, в яких виявлено п'ять нових тетрарних сполук: $Tl_2ZnGe_3Se_8$, $Tl_2CdGeSe_4$, $Tl_2CdGe_3Se_8$, $Tl_2HgGeSe_4$ та $Tl_2HgGe_3Se_8$.

На ізотермічному перерізі системи Tl₂Se–ZnSe–GeSe₂ при 570 К встановлено існування 7 незначних однофазних областей. Вони відповідають α-, β-, γ-, δ-, ε-, η – твердим розчинам на основі Tl₂Se, ZnSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃ та Tl₂Ge₂Se₅ відповідно та сполуці Tl₂ZnGe₃Se₈. Ці однофазні поля розділяються за допомогою 12 двофазних, між якими є 6 трифазних областей (α-β-δ, δ-β-ε, ε-β-Tl₂ZnGe₃Se₈, ε-Tl₂ZnGe₃Se₈–η, η-Tl₂ZnGe₃Se₈–γ, γ-Tl₂ZnGe₃Se₈–β). Встановлено характер фізико-хімічної взаємодії на перерізі Tl₂Se–ZnSe, діаграма стану якого належить до перитектичного типу (L_p + β ↔ α). Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 К містить 9 однофазних областей: α, β, γ, δ, ε, η, ζ,

Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 К містить 9 однофазних областей: α , β , γ , δ , ε , η , ζ , σ та θ . Ці поля відповідають твердим розчинам на основі сполук Tl₂Se, CdSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅, Cd₄GeSe₆, Tl₂CdGeSe₄ та Tl₂CdGe₃Se₈ відповідно. Вони розділені 17 двофазними рівновагами, між якими є 9 трифазних областей (α – β – δ , δ – β – σ , δ – σ – ε , ε – σ – θ , ε – θ – η , η – θ – γ , γ – θ – ζ , σ – β – θ). Переріз Tl₂Se–CdSe евтектичного типу ($L_{\rho} \leftrightarrow \alpha + \beta$) з незначною розчинністю.

При 520 К концентраційний трикутник квазіпотрійної системи Tl₂Se-HgSe-GeSe₂ містить 10 однофазних полів: α , β -, γ -твердих розчинів на основі бінарних сполук Tl₂Se, HgSe, GeSe₂; δ -, ϵ -, η -твердих розчинів на основі тернарних сполук Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅ відповідно та ще чотирьох сполук: Tl₂Hg₃Se₄, Hg₂GeSe₄, Tl₂HgGeSe₄, η -Tl₂HgGeSe₄, η -

Рентгенівським методом порошкової дифракції досліджена кристалічна структура для тетрарних сполук $Tl_2 ZnGe_3 Se_8$ та $Tl_2 HgGe_3 Se_8$. Дані халькогеніди є ізоструктурними та кристалізуються в ромбічній сингонії ПГ $P2_12_12_1$ (CT Cs₂CdGe₃Se₈).

Ключові слова: квазіпотрійна система, ізотермічний переріз, політермічний переріз, фазові рівноваги, тверді розчини, тетрарні сполуки.

Andrii SELEZEN

Doctor of Philosophy in Chemistry, Senior Lecturer at the Department of Chemistry and Physics, National University of Water and Environmental Engineering, 11 Soborna str., Rivne, Ukraine, 33028 **ORCID:** 0000-0002-1174-7439

Lyubomyr GULAY

Doctor of Sciences in Chemistry, Professor, Head of the Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0003-3495-5027

Mykola MOROZ

Doctor of Sciences in Chemistry, Professor, Head of the Department of Chemistry and Physics, National University of Water and Environmental Engineering, 11 Soborna str., Rivne, Ukraine, 33028 ORCID: 0000-0003-1639-4713

Lyudmyla PISKACH

Candidate of Chemical Sciences, Professor, Professor at the Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0003-3117-4006

To cite this article: Selezen, A., Gulay, L., Moroz, M., Piskach, L. (2025). Vzayemodii v systemakh Tl₂Se–Zn(Cd, Hg)Se–GeSe₂ [Interactions in the Tl₂Se–Zn(Cd, Hg)Se–GeSe₂ systems]. *Problems of Chemistry and Sustainable Development*, 1, 41–49, doi: https://doi.org/10.32782/pcsd-2025-1-6

INTERACTIONS IN THE TI,Se-Zn(Cd, Hg)Se-GeSe, SYSTEMS

The nature of the physicochemical interaction in the quasi-ternary $Tl_2Se-Zn(Cd, Hg)Se-GeSe_2$ systems was studied using X-ray diffraction, differential thermal analysis, and microstructural analysis. Five new quaternary compounds were discovered in these systems: $Tl_2ZnGe_3Se_8$, $Tl_2CdGeSe_4$, $Tl_2CdGe_3Se_8$, $Tl_2HgGeSe_4$, and $Tl_2HgGe_3Se_8$.

The existence of 7 small single-phase regions on the isothermal section of the Tl_Se–ZnSe–GeSe, system was established at 570 K. They correspond to α , β , γ , δ , ε , η – solid solutions based on Tl_Se, ZnSe, GeSe, Tl_GeSe, Tl_GeSe, Tl_GeSe, respectively, and on the Tl_ZnGe_Se, compound. These single-phase fields are separated by 12 two-phase fields, between which there are 6 three-phase regions (α – β – δ , δ – β – ε , ε – β –Tl_ZnGe_Se, ε –Tl_ZnGe_Se, η , η –Tl_ZnGe_Se, γ , γ –Tl_ZnGe_Se, ε – β). The nature of the physicochemical interaction in the Tl_Se–ZnSe section has been established, and the type of phase diagram is categorized as peritectic ($L_p + \beta \leftrightarrow a$). The isothermal section of the Tl_Se–CdSe–GeSe, system at 570 K contains 9 single-phase regions: α , β , γ , δ , ε , η , ζ ,

The isothermal section of the Tl₂Se–CdSe–GeSe² system at 570 K contains 9 single-phase regions: α , β , γ , δ , ε , η , ζ , σ , and θ . These fields correspond to solid solutions based on the compounds Tl₂Se, CdSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅, Cd₄GeSe₆, Tl₂CdGeSe₄, and Tl₂CdGe₃Se₈, respectively. They are separated by 17 two-phase equilibria, between which there are 9 three-phase regions (α – β – δ , δ – β – σ , δ – σ – ε , ε – σ – θ , ε – θ – η , η – θ – ζ , θ – β – ζ , σ – β – θ). The Tl₂Se–CdSe section belongs to a eutectic type ($L_{e} \leftrightarrow \alpha + \beta$) with negligible solubility.

The concentration triangle of the quasi-ternary system Tl_Se–HgSe–GeSe, at 520 K contains 10 single-phase fields: α -, β -, γ -solid solutions based on binary compounds Tl_Se, HgSe, GeSe₂; δ -, ϵ -, η -solid solutions based on ternary compounds Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅, respectively, and four more compounds: Tl₂Hg₃Se₄, Hg₂GeSe₄, Tl₂HgGeSe₄, Tl₂HgGe₃Se₈. They are divided by 19 two-phase equilibria (α -Tl₂Hg₃Se₄, Tl₂Hg₃Se₄- β , α - δ , δ - ϵ , ϵ - η , η - γ , γ -Hg₂GeSe₄, Hg₂GeSe₄- β , δ -Tl₂Hg₃Se₄, δ - β , δ -Tl₂HgGeSe₄, ϵ -Tl₂HgGeSe₄, η -Tl₂HgGeSe₄, η -Tl₂HgGe₃Se₈, Tl₂HgGe₃Se₈, Tl₂HgGe₃Se₈- β , Tl₂HgGe₃S

The crystal structure of the Tl₂ZnGe₃Se₈ *and* Tl₂HgGe₃Se₈ *quaternary compounds was investigated by X-ray powder diffraction. These chalcogenides are isostructural and crystallize in the orthorhombic system* SG P2₁2₁2₁ (STCs₂CdGe₃Se₈).

Key words: quasi-ternary system, isothermal section, polythermal section, phase equilibria, solid solutions, quaternary compounds.

Вступ. Вивчення складних систем, компонентами у яких виступають бінарні напівпровідникові сполуки, є одним із напрямків пошуку нових напівпровідникових фаз. До таких систем відносяться халькогенідні системи типу Tl₂Se– Zn(Cd, Hg)Se–GeSe₂. Бінарні халькогеніди Zn, Ссичи Hg, а також їх тернарні і тетрарні похідні, ϵ класичними матеріалами для напівпровідникової техніки і займають важливе місце серед матеріалів, що використовуються в нелінійній оптиці (Massalski, 1990; Kovách, 2003; McGuire, 2005; Vasilyev, 2013), IЧ-оптоелектроніці, термо- та електрохімії та ін. (Pielmeier, 2015; Рибалка, 2019; Lonchakov, 2021; Moroz, 2022; Сігіgnano, 2025). Їх дослідження є актуальною проблемою, вирішення якої дозволить виявити нові фази, дослідити їх кристалічну структуру, природу утворення, запропонувати методи і умови вирощування кристалів, вивчити їх фізико-хімічні властивості.

У літературі також відомо про аналогічні дослідження рівноваг у значній кількості халькогенідних систем типу $A_2^{I}X-B^{II}X-GeX_2$ $(B^{II} = Zn, Cd, Hg; X = S, Se, Te)$ за участю Талію та Купруму (Mozolyuk, 2013; Parasyuk, 2005; Piskach, 2000; Parasyuk, 2001; Romanyuk, 2003; Olekseyuk, 2005; Marchuk, 2008), а також Аргентуму (Piskach, 1998; Moroz, 2017; Parasyuk, 2003). Майже у всіх цих системах на перерізах $A_2^{I}GeSe_3-B^{II}Se$ виявлено ізоструктурні сполуки типу $A_2^{I}B^{II}GeSe_4$ тетрагональної структури (просторова група *I*-42*m*). Сполук зі співвідношенням елементів 2:1:3:8 не встановлено.

Експериментальна частина. Синтезували зразки високотемпературним методом у муфельній печі МП-60 сплавляючи прості речовини: талій, цинк, кадмій, германій, селен (щонайменше 99,99 ваг.% чистоти) та меркурій селенід у вакуумованих (1 · 10⁻³ мм.рт.ст.) та відпаяних ампулах із кварцу. Зразки нагрівали до 1270 К зі швидкістю 10 К/год, 7 год витримували та охолоджували до 570 К зі швидкістю 6 К/год. Гомогенізуючий відпал при цьому був 350 год. Далі загартовували у 20%-ий водний розчин NaCl.

Фазовий склад встановлювали методами ренгенофазового (РФА) та мікроструктурного аналізів (МСА). Рентгенограми зразків знімали на дифрактометрі DRON 4-13 (К α -випромінювання, $10^\circ \le 2\theta \le 80^\circ$, крок $0,05^\circ$, 5 с у кожній точці. Для структурних обчислень параметри наступні $10^\circ \le 2\theta \le 100^\circ$, крок $0,05^\circ$, експозиція 20 с. Кристалічна структура нових тетрарних сполук розрахована методом Рітвельда. Мікроструктуру досліджували на мікротвердометрі Leica VMHT Auto. Фазові

діаграми будували за результатами диференційно-термічного аналізу (ДТА) з використанням установки Термодент Т-04 фірми «Progret».

Виклад основного матеріалу дослідження. При вивченні взаємодії в квазіпотрійних системах Tl_2 Se–Cd(Hg)Se–GeSe₂ при 570 К (для кадмієвмісної системи) і при 520 К (для меркурієвмісної системи) встановлено утворення тетрарних сполук Tl_2 Cd(Hg)GeSe₄ при еквімолярному співвідношенні бінарних компонентів на перерізах Tl_2 GeSe₃–Cd(Hg)Se та Tl_2 Cd(Hg)Ge₃Se₈. При співвідношенні 1:1:3 на перерізах «Tl₂Cd(Hg)Se₂»– GeSe₂. Триангулюючими у цих системах є по два перерізи Tl_4 GeSe₄–Cd(Hg)Se та Tl_2 GeSe₃– Cd(Hg)Se. Всі інші рівноваги двофазні лише в підсолідусній області.

Характер фазових рівноваг в системі Tl₂Se-CdSe-GeSe, представлено в роботах (Selezen, 2020; Олексеюк, 2021). Після уточнення взаємодії в частині CdSe-Tl₂CdGeSe₄-Tl₂CdGe₃Se₈-Cd₄GeSe₆ оновлений ізотермічний переріз при 570 К наведено на рис. 1 (Селезень, 2024). При температурі відпалу у цій квазіпотрійній системі є дев'ять однофазних областей, котрі відповідають α , β , γ , δ , ϵ , η , ζ , σ , θ -твердим розчинам на основі сполук Tl₂Se, CdSe, GeSe₂, $Tl_{4}GeSe_{4}$, Tl₂GeSe₃, Tl,Ge,Se, Cd_4GeSe_6 , Tl₂CdGeSe₄ та Tl₂CdGe₃Se₈ відповідно. Ці однофазні поля є розділеними за допомогою 17 двофазних рівноваг, між якими є дев'ять трифазних областей (α-β-δ, δ-β-σ, δ-σ-ε, $\epsilon - \sigma - \theta$, $\epsilon - \theta - \eta$, $\eta - \theta - \gamma$, $\gamma - \theta - \zeta$, $\theta - \beta - \zeta$, $\sigma - \beta - \theta$). Розчинність на основі CdSe становить близько 5 мол.%, на основі інших сполук менше 3 мол.% (Селезень, 2024).

Рис. 1. Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 К (Селезень, 2024)

З літературних джерел відомо про декілька варіантів побудови системи Tl_2 Se–CdSe, що відрізняються між собою характером фазових рівноваг та методами дослідження (Guseinov, 1981; Mucha, 2011). Згідно результатів РФА встановлено, що у системі при 570 К утворюються граничні тверді розчини: α – на основі сполуки Tl_2 Se (*ПГ Р4/ncc*), β – на основі сполуки CdSe (*ПГ Р6*₃*mc*), зразки між ними є двофазними; існування сполуки складу $Tl_{16}Cd_3Se_{11}$, яка наведена в роботі (Mucha, 2011), не підтверджено (рис. 2).

Рис. 2. Дифрактограми зразків системи Tl,Se-CdSe (Селезень, 2024)

Рис. 3. Діаграма стану системи Tl₂Se–CdSe (Селезень, 2024)

Діаграму стану системи $Tl_2Se-CdSe$ зображено на рис. 3.

Сплав складу 5 мол.% CdSe є однофазним, тоді як сплав складу 95 мол.% CdSe уже двофазним, хоча відбувається незначне зміщення дифракційних відбить в обох випадках. Протяжності граничних твердих розчинів при температурі гомогенізуючого відпалу (570 К) не перевищують 7 та ~3 мол.% відповідно. Встановлено приналежність взаємодії у цій системі до V типу діаграм стану за Розебомом – евтектичного ($L_e \Leftrightarrow \alpha + \beta$), як і в роботі (Guseinov, 1981). Криві первинної кристалізації вихідних компонентів перетинаються в евтектичній точці з координатами 13 мол.% CdSe при 622 К.

При дослідженні квазіпотрійної системи T_2 Se–HgSe–GeSe₂ при 520 К авторами роботи (Mozolyuk&Piskach, 2013) було виявлено також дві тетрарні сполуки Tl_2 HgGeSe₄ та Tl_2 HgGe₂Se₆. Однак, після отримання нами сполук Tl_2 CdSi₃Se₈ та Tl_2 CdGe₃Se₈ (Selezen, 2020) і розшифровки їх структури, склад Tl_2 HgGe₂Se₆ був уточнений до формули Tl_2 HgSi₃Se₈, що аналогічно до кадмієвмісної системи. Уточнено діаграму стану Tl_2 Se–HgSe (рис. 4) порівняно з (Asadov, 1982).

Рис. 4. Діаграма стану системи Tl₂Se–HgSe (Mozolyuk, 2013)

Підтверджено інконгруентний характер утворення тернарної сполуки $Tl_2Hg_3Se_4$, що наведена в (Mozolyuk&Piskach, 2013) (моноклінна структура, $\Pi\Gamma C2/c$ (Johnsen, 2011), однак отримані температури є значно нижчими від наведених у (Asadov, 1982): 602 К – температура перитектичного утворення за реакцією Lp + HgSe \Leftrightarrow \Leftrightarrow β -Tl₂Hg₃Se₄ та 540 К – поліморфного перетворення *BTM*-Tl₂Hg₃Se₄ \Leftrightarrow *HTM*-Tl₂Hg₃Se₄; евтектична взаємодія Le $\Leftrightarrow \alpha$ -Tl₂Se + Tl₂Hg₃Se₄ відбувається при 28 мол.% HgSe і 560 К (рис. 4). При 520 К концентраційний трикутник меркурієвмісної системи (рис. 5) містить десять однофазних полів твердих розчинів на основі Tl₂Se, HgSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃, Tl₂CdGe₃Se₈ та сполук: Tl₂Hg₃Se₄, Hg₂GeSe₄, Tl₂CdGeSe₄.

Рис. 5. Ізотермічний переріз системи Tl,Se–HgSe–GeSe, при 570 К

При вивченні взаємодії в квазіпотрійній системі $Tl_2Se-ZnSe-GeSe_2$ також не виявлено відомостей про переріз $Tl_2Se-ZnSe$. Методами РФА, МСА та ДТА було проведено експериментальне дослідження фазових рівноваг у цій системі. Результати РФА при 570 К зображено на рис. 6. При зазначеній температурі у квазіподвійній системі $Tl_2Se-ZnSe$ в межах складів 0–8 мол.% ZnSe присутні α -тверді розчини на основі сполуки Tl_2Se ; далі починає кристалізуватися суміш фаз, що складається з α - та β -твердих розчинів на основі подвійних сполук Tl₂Se та ZnSe відповідно. При складі 97 мол.% ZnSe починає кристалізується β -твердий розчин на основі подвійної сполуки ZnSe. За результатами ДTA побудовано діаграму стану подвійного перерізу Tl₂Se–ZnSe (рис. 6) (Селезень, 2023).

Рис. 6. Дифрактограми зразків системи Tl,Se–ZnSe (Селезень, 2023)

Встановлено, що характер фізико-хімічної взаємодії на перерізі Tl_2 Se–ZnSe (рис. 7) відноситься до перитектичного типу і описується рівнянням $L_n + \beta \Leftrightarrow \alpha$ при 710 К; концентраційні

межі перитектичної горизонталі становлять 33–96 мол.% ZnSe. Після 50 мол.% ZnSe у зоні, що відповідає ліквідусу, не зафіксовано ефектів ДТА. Тому ліквідує встановлювали за допомогою екстраполяції лінії до відомої з літератури (Massalski, 1990) температури плавлення подвійної сполуки ZnSe, що становить 1793 К.

Розчинність α -твердих розчинів на основі сполуки Tl₂Se, що ідентифіковані у *ПГ Р4/псс* (Філеп, 2017) та β-твердих розчинів на основі подвійної сполуки ZnSe (*ПГ F*–43*m* (Селезень, 2024; Massalski, 1990) становить 8 мол.% ZnSe та до 3 мол.% Tl₂Se при 570 К відповідно і представлена на діаграмі за результатами РФА, наведеними на рис. 6.

За результатами дослідження фазових рівноваг було побудовано ізотермічний переріз квазіпотрійної системи $Tl_2Se-ZnSe-GeSe_2$ при температурі гомогенізуючого відпалу 570 К, який зображено на рис. 8.

ТІ,Se–ZnSe–GeSe, при 570 К

Встановлено утворення у цій системі нової тетрарної сполуки $Tl_2ZnGe_3Se_8$ по перерізу « Tl_2ZnSe_2 »-GeSe₂ при співвідношенні цих складів 1:3. На ізотермічному перерізі квазіпотрійної системи Tl_2Se_2 Псе_GeSe₃ при

температурі відпалу 570 К існує сім однофазних полів. Ці поля характеризуються α, β, γ, δ , ε , η , θ -твердими розчинами на основі Tl₂Se, ZnSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅ та Tl₂ZnGe₃Se₈ відповідно. Згадувані вище однофазні поля розділяються за допомогою дванадцяти двофазних: α - β , α - δ , δ - ϵ , ϵ - η , η - γ , $\gamma-\beta$, $\delta-\beta$, $\epsilon-\beta$, $\epsilon-Tl_2ZnGe_3Se_8$, $\eta-Tl_2ZnGe_3Se_8$, $Tl_2ZnGe_3Se_8-\beta$, $Tl_2ZnGe_3Se_8-\gamma$ відповідно. У свою чергу двофазні поля поділяють досліджуваний ізотермічний переріз на шість трифазних (α - β - δ , δ - β - ϵ , ϵ - β - θ , ϵ - θ - η , η - θ - γ , $\gamma - \theta - \beta$) областей. Розчинність при температурі відпалу для α-твердих розчинів на основі сполуки Tl₂Se становить до 8 мол.%. Тоді як на основі сполуки ZnSe – до 5 мол.%. Розчинність на основі інших сполук є незначною – менше 3 мол.% відповідного компонента (Селезень, 2024).

Тетрарні сполуки $Tl_2B^{II}GeSe_4 \in i$ зоструктурні та кристалізуються в нецентросиметричній тетрагональній сингонії (ПГ I-42m) з параметрами: a = 0.80145(9), c = 0.67234(9) нм для $Tl_2CdGeSe_4$ (Selezen, 2020) та a = 0.79947(4), c = 0.67617(4) нм для $Tl_2HgGeSe_4$ (Mozolyuk & Piskach & Fedorchuk, 2013). Сполуки типу $Tl_2B^{II}Ge_3Se_8$ також ізоструктурні з тригональною структурою (ПГ $P2_12_12_1$). Для сполуки $Tl_2CdGe_3Se_8$ параметри гратки наступні: a = 0.7602(3), b = 1.2071(2), c = 1.7474(2) нм (Selezen, 2020); для $Tl_2ZnGe_3Se_8 - a = 0.7466(3)$, b = 1.1910(6), c = 1.7382(6) нм; для $Tl_2HgGe_3Se_8 - a = 0.76038(9)$, b = 1.2052(2), c = 1.7485(2) нм.

Висновки. Визначено фазові рівноваги при температурі 570 К на ізотермічних перерізах квазіпотрійних систем Tl₂Se–Zn(Cd, Hg) Se–GeSe₂. Встановлено утворення п'яти нових тетрарних сполук: Tl₂CdGeSe₄, Tl₂HgGeSe₄, що кристалізуються в тетрагональній сингонії (ПГ I–42m) та Tl₂ZnGe₃Se₈, Tl₂CdGe₃Se₈, Tl₂HgGe₃Se₈, що належать ромбічної сингонії (ПГ P2₁2₁2₁).

ЛІТЕРАТУРА:

1. Massalski T., Okamoto H., Subramanian P., and Kacprzak L. Binary Alloy Phase Diagrams, 2nd Edition. ASM International, Materials Park, OH, USA. 1990. 1–3. 3542 p.

2. Kovách S., Nemcsics Á., Lábadi Z., Motrya S. Investigation of the Electronic Structure of Cd_4GeSe_6 by Photoelectrochemical and Photoluminescence Methods. *Inorganic Materials*. 2003. 39(2). P. 108–112.

3. McGuire M., Scheidemantel Th., Badding J., DiSalvo F. Tl_2AXTe_4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, and Thermoelectric Properties. *Chem. Mater.* 2005. 17. P. 6186–6191.

4. Vasilyev V., Minaev V., Batyunya L. Thermodynamic properties, phase diagrams and glass-formation of thallium chalcogenides. *Chalcogenide Letters*. 2013. 10(11). P. 485–507.

5. Pielmeier F, Landolt G, Slomski B., Muff S., Berwanger J., Eich A., Khajetoorians A., Wiebe J., Aliev Z., Babanly M., Wiesendanger R., Osterwalder J., Chulkov E., Giessibl F., Dil J. Response of the topological surface state to surface disorder in TlBiSe₂. 2015. *New J. Phys.* 17. P. 023067. https://doi.org/10.1088/1367-2630/17/2/023067

6. Рибалка I., Тупіцина I., Гриньов Б., Вовк Р., Кислиця М., Хаджай Г., Бойко Г. Можливість отримання кристалів ZnSe з високою структурною досконалістю для кріогенної болометричної техніки. *Вісник XHV імені В. Н. Каразіна, серія «Фізика».* 2019. 30(1). С. 24–29. https://doi.org/10.26565/2222-5617-2019-30-03

7. Lonchakov A., Bobin S. Large linear magnetoresistance in single HgSe crystals induced by low-concentration Co impurity. *Appl. Phys. Lett.* 2021. 118(6). P. 062106. https://doi.org/10.1063/5.0032572

8. Moroz M., Demchenko P., Tesfaye F., Prokhorenko M., Mysina O., Soliak L., Yarema N., Prokhorenko S., Reshetnyak O. Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method. *Physics and Chemistry of Solid State*. 2022. 23(3), 575–581. https://doi.org/10.15330/pcss.23.3.575-581

9. Cirignano M., Roshan H., Farinini E., Di Giacomo A., Fiorito S., Piccinotti D., Khabbazabkenar S., Di Stasio F., Moreels I. Blue CdSe/CdS core/crown nanoplatelet light-emitting diodes obtained via a design-of-experiments approach, *Nanoscale*. 2025. 17(1). P. 304–313. https://doi.org/10.1039/D4NR03461A

10. Mozolyuk M., Piskach L., Fedorchuk A., Olekseyuk I., Parasyuk O. The Tl₂Se–HgSe–GeSe₂ system and the crystal structure of Tl₂HgGeSe₄. *Chem. Met. Alloys.* 2013. 6. P. 55–62. https://doi.org/10.30970/cma6.0229

11. Parasyuk O., Olekseyuk I., Piskach L. X-ray powder diffraction refinement of $Cu_2ZnGeTe_4$ structure and phase diagram of the Cu_2GeTe_3 –ZnTe system. J. Alloys Comp. 2005. 397(1–2). 169–172. https://doi.org/10.1016/j.jallcom.2005.01.032

12. Piskach L., Parasyuk O., Romanyuk Y. The Phase Equilibria in the Quasi-binary Cu₂GeS₃/Se₃/-CdS/Se/ Systems. J. Alloys Comp. 2000. 299 (1–2). P 227–231.

13. Parasyuk O., Gulay L., Romanyuk Y., Piskach L., Phase diagram of the Cu₂GeSe₃–ZnSe system and crystal structure of the Cu₂ZnGeSe₄ compound. *J. Alloys Comp.* 2001. 329(1–2). P. 202–207.

14. Romanyuk Y., Parasyuk O. Phase equilibria in the quasi-ternary Cu₂Se–ZnSe–GeSe₂ system. J. Alloys Comp. 2003. 348(1–2). P. 195–202. https://doi.org/10.1016/S0925-8388(02)00852-6

15. Olekseyuk I., Marchuk O., Gulay L., Zhbankov O. Isothermal section of the $Cu_2Se-HgSe-GeSe_2$ system at 670 K and crystal structures of the Compounds $Cu_2HgGeSe_4$ and HT-modification of Cu_2HgGeS_4 . *ChemInform*. 2005. 36(40). https://doi.org/10.1002/chin.200540006

16. Marchuk O., Olekseyuk I., Grebenyuk A. Phase equilibrium in the system Cu₂Se-HgSe-GeSe₂. J. Alloys Comp. 2008. 398(1-2). P. 80-84.

17. Piskach L., Parasyuk O. The Ag, GeS, - CdS system. Polish. J. Chem. 1998. 72(6). P. 1112-1115.

18. Moroz M., Demchenko P., Prokhorenko M., Reshetnyak O. Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag_2PbGeS_4 , $Ag_{0.5}Pb_{1.75}GeS_4$ and $Ag_{6.72}Pb_{0.16}Ge_{0.84}S_{5.20}$ of the Ag-Pb-Ge-S System Determined by EMF Method. J. Phase Equilib. Diffus. 2017. 38. 426–433. https://doi.org/10.1007/s11669-017-0563-6

19. Parasyuk O., Gulay L., Romanyuk Y., Olekseyuk I., Piskach L. The Ag₂Se–HgSe–GeSe₂ system and crystal structures of the compounds. *J. Alloys Comp.* 2003. 351(1–2). P. 135–144. https://doi.org/10.1016/S0925-8388(02)01023-X

20. Selezen A., Olekseyuk I., Myronchuk G., Smitiukh O., Piskach L. Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} -Cd, Hg; D^{IV} -Si, Ge; X–Se, Te) and isothermal sections of the Tl_2 Se–CdSe-Ge(Sn)Se₂ systems at 570 K. J. Solid State Chem. 2020. 289. P. 121422. https://doi.org/10.1016/j.jssc.2020.121422

21. Олексеюк I., Селезень А., Смітюх О., Гулай Л., Піскач Л. Тетрарні халькогеніди систем Tl₂X–B^{II}X–D^{IV}X₂ (B^{II}– Cd, Hg, D^{IV} – Si, Ge; X – Se, Te). Проблеми хімії та сталого розвитку. 2021. 2. С. 26–37. https://doi.org/10.32782/ pcsd-2021-2-5

22. Селезень А. Фазові рівноваги в системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднених, кристалічна структура і властивості проміжних фаз : дис. ... докт. філос.: 102–Хімія. Луцьк, 2024. 176 с.

23. Guseinov F. H., Babanly M. B., Kuliev A.A. Phase equilibria and intermolecular interaction in the TlSe. (Tl₂Se)–CdSe systems. *Inorg. Chem.* 1981. 26(1). 215–217.

24. Mucha I., Wiglusz K. Phase studies on the quasi-binary thallium(I) selenide-cadmium selenide system. *Thermochimica Acta*. 2011. 526(1). P. 107–110.

25. Mozolyuk M., Piskach L., Fedorchuk A., Olekseyuk I., Parasyuk O. The Tl₂Se-HgSe-GeSe₂ system and the crystal structure of Tl₂HgGeSe₄. *Chem. Met. Alloys.* 2013. 6. P. 55–62. https://doi.org/10.30970/cma6.0229

26. Selezen A., Kogut Y., Piskach L., Gulay L. New Quaternary Chalcogenides $Tl_2M^{II}M_3^{IV}Se_8$ and $Tl_2M^{II}M_4^{IV}X_4$. *MPDI: Proceedings*. 2020. 62(1). 3. https://doi.org/10.3390/proceedings2020062003

27. Asadov M., Babanly M., Kuliev A. (1982). Phase equilibria and thermodynamic properties of the Hg–Tl–Se system. J. Inorg. Chem. 27. P. 3173–3178.

28. Johnsen S., Peter S., Nguyen S., Song J., Jin H., Freeman A., Kanatzidis M. (2011). $Tl_2Hg_3Q_4$ (Q = S, Se, and Te): High-Density, Wide-Band-Gap Semiconductors. *Chem. Mater.* 23. P. 4375–4383.

29. Мозолюк М. Фазові рівноваги та властивості фаз у системах $Tl_2X-B^{II}X-D^{IV}X_2$ і $TlC^{III}X_2-D^{IV}X_2$ (B^{II} – Hg, Pb; C^{III} – Ga, In; D^{IV} – Si, Ge, Sn; X – S, Se) : дис. ... канд. хім. наук: 02.00.01. Ужгород, 2013. 250 с.

30. Селезень А., Піскач Л. Фізико-хімічна взаємодія в системах Tl₂Se–Zn(Cd)Se. VII Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи». Житомир, 19 квітня 2023. С. 137–138.

31. Філеп М., Сабов М. Квазіпотрійна система Tl₂S–Tl₂Se–Tl₄PbSe₃. *Наук. вісник Ужгород. ун-ту. Серія Хімія.* 2017. 1(37). 14–16.

REFERENCES:

1. Massalski, T., Okamoto, H., Subramanian, P., & Kacprzak, L. (1990). Binary Alloy Phase Diagrams, 2nd Edition. ASM International, Materials Park, OH, USA. 1–3. 3542.

2. Kovách, S., Nemcsics, A., Lábadi, Z., & Motrya, S. (2003). Investigation of the Electronic Structure of Cd₄GeSe₆ by Photoelectrochemical and Photoluminescence Methods. *Inorganic Materials*. 39(2). P. 108–112.

3. McGuire, M., Scheidemantel, Th., Badding, J., & DiSalvo, F. (2005). Tl_2AXTe_4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, and Thermoelectric Properties. *Chem. Mater* 17. P. 6186–6191.

4. Vasilyev, V., Minaev, V., & Batyunya, L. (2013). Thermodynamic properties, phase diagrams and glass-formation of thallium chalcogenides. *Chalcogenide Letters*. 10(11). P. 485–507.

5. Pielmeier, F, Landolt, G, Slomski, B., Muff, S., Berwanger, J., Eich, A., Khajetoorians, A., Wiebe, J., Aliev, Z., Babanly, M., Wiesendanger, R., Osterwalder, J., Chulkov, E., Giessibl, F., & Dil, J. (2015). Response of the topological surface state to surface disorder in TIBiSe, *New J. Phys.* 17. P. 023067. https://doi.org/10.1088/1367-2630/17/2/023067

6. Rybalka, I., Tupitsyna, I., Hrynov, B., Vovk, R., Kyslytsia, M., Khadzhai, H., & Boiko, H. (2019). Mozhlyvist otrymannia krystaliv ZnSe z vysokoiu strukturnoiu doskonalistiu dlia kriohennoi bolometrychnoi tekhniky [Possibility of obtaining ZnSe crystals with high structural perfection for cryogenic bolometric techniques]. *Visnyk KhNU imeni V.N. Karazina. Seriia Fizyka – Journal of V. N. Karazin Kharkiv National University. Series Physics.* 30(1). P. 24–29. [in Ukrainian]. https://doi.org/10.26565/2222-5617-2019-30-03

7. Lonchakov, A., & Bobin, S. (2021). Large linear magnetoresistance in single HgSe crystals induced by low-concentration Co impurity. *Appl. Phys. Lett.* 118(6). P. 062106. https://doi.org/10.1063/5.0032572

8. Moroz, M., Demchenko, P., Tesfaye, F., Prokhorenko, M., Mysina, O., Soliak, L., Yarema, N., Prokhorenko, S., & Reshetnyak, O. (2022). Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method. *Physics and Chemistry of Solid State*. 23(3), P. 575–581. https://doi.org/10.15330/pcss.23.3.575-581

9. Cirignano, M., Roshan, H., Farinini, E., Di Giacomo, A., Fiorito, S., Piccinotti, D., Khabbazabkenar, S., Di Stasio, F., & Moreels, I. (2025). Blue CdSe/CdS core/crown nanoplatelet light-emitting diodes obtained via a design-of-experiments approach, *Nanoscale*. 17(1). P. 304–313. https://doi.org/10.1039/D4NR03461A

10. Mozolyuk, M., Piskach, L., Fedorchuk, A., Olekseyuk, I., & Parasyuk, O. (2013). The Tl₂Se-HgSe-GeSe₂ system and the crystal structure of Tl₂HgGeSe₄. *Chem. Met. Alloys.* 6. P. 55–62. https://doi.org/10.30970/cma6.0229

11. Parasyuk, O., Olekseyuk, I., & Piskach, L. (2005). X-ray powder diffraction refinement of Cu₂ZnGeTe₄ structure and phase diagram of the Cu₂GeTe₃–ZnTe system. J. Alloys Comp. 397(1–2). 169–172. https://doi.org/10.1016/j.jallcom.2005.01.032

12. Piskach, L., Parasyuk, O., & Romanyuk, Y. (2000). The Phase Equilibria in the Quasi-binary Cu₂GeS₃/Se₃/-CdS/ Se/ Systems. J. Alloys Comp. 2000. 299 (1–2). P 227–231.

13. Parasyuk, O., Gulay, L., Romanyuk, Y., & Piskach, L. (2001). Phase diagram of the Cu₂GeSe₃–ZnSe system and crystal structure of the Cu₂ZnGeSe₄ compound. *J. Alloys Comp.* 2001. 329(1–2). P. 202–207.

14. Romanyuk, Y., & Parasyuk, O. (2003). Phase equilibria in the quasi-ternary Cu₂Se–ZnSe–GeSe₂ system. J. Alloys Comp. 348(1–2). P. 195–202. https://doi.org/10.1016/S0925-8388(02)00852-6

15. Olekseyuk, I., Marchuk, O., Gulay, L., & Zhbankov, O. (2005). Isothermal section of the $Cu_2Se-HgSe-GeSe_2$ system at 670 K and crystal structures of the Compounds $Cu_2HgGeSe_4$ and HT-modification of Cu_2HgGeS_4 . *ChemInform*. 36(40). https://doi.org/10.1002/chin.200540006

16. Marchuk, O., Olekseyuk, I., & Grebenyuk, A. (2008). Phase equilibrium in the system Cu₂Se-HgSe-GeSe₂. *J. Alloys Comp.* 398(1-2). P. 80-84.

17. Piskach, L., & Parasyuk, O. (1998). The Ag, GeS, -CdS system. Polish. J. Chem. 72(6). P. 1112-1115.

18. Moroz, M., Demchenko, P., Prokhorenko, M., & Reshetnyak, O. (2017). Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag₂PbGeS₄, Ag_{0.5}Pb_{1.75}GeS₄ and Ag_{6.72}Pb_{0.16}Ge_{0.84}S_{5.20} of the Ag-Pb-Ge-S System Determined by EMF Method. J. Phase Equilib. Diffus. 38. P. 426–433. https://doi.org/10.1007/s11669-017-0563-6

19. Parasyuk, O., Gulay, L., Romanyuk, Y., Olekseyuk, I., & Piskach, L. (2003). The Ag₂Se-HgSe-GeSe₂ system and crystal structures of the compounds. *J. Alloys Comp*. 351(1–2). P. 135–144. https://doi.org/10.1016/S0925-8388(02)01023-X

20. Selezen, A., Olekseyuk, I., Myronchuk, G., Smitiukh, O., & Piskach, L. (2020). Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} – Cd, Hg; D^{IV} – Si, Ge; X–Se, Te) and isothermal sections of the Tl_2 Se–CdSe–Ge(Sn)Se, systems at 570 K. J. Solid State Chem. 289. P. 121422. https://doi.org/10.1016/j.jssc.2020.121422

21. Olekseyuk, I., Selezen, A., Smitiukh, O., Gulay, L., & Piskach, L. (2021). Tetrarni zhalkohenidy system $\text{Tl}_2 X - B^{II} X - D^{IV} X_2$ ($B^{II} - \text{Cd}$, Hg, $D^{IV} - \text{Si}$, Ge; X - Se, Te) [Quaternary chalcogenides of the $\text{Tl}_2 X - B^{II} X - D^{IV} X_2$ ($B^{II} - \text{Cd}$, Hg, $D^{IV} - \text{Si}$, Ge; X - Se, Te) systems]. *Problemy khimii ta stalogo rozvytku – Problems of Chemistry and Sustainable Development*. 2. P. 2637. https://doi.org/10.32782/pcsd-2021-2-5 [in Ukrainian].

22. Selezen, A. (2024). Fazovi rivnovahy v systemakh Tl₂Se–CdSe–Si(Ge, Sn)Se₂ ta sporidnenykh, krystalichna struktura i vlastymosti promizhnykh faz : dys. ... doct. filos.: 102–Khimiya [Phase equilibria in the quasi-ternary Tl₂Se–CdSe–Si(Ge, Sn)Se and related systems, crystal structure and properties of intermediate phases : thesis ... philos. doc.: 102– Chemistry]. Lutsk. 176 [in Ukrainian].

23. Guseinov, F., Babanly, M., & Kuliev, A. (1981). Phase equilibria and intermolecular interaction in the TlSe. (Tl₂Se)–CdSe systems. *Inorg. Chem.*, 26(1). P. 215–217.

24. Mucha, I., & Wiglusz, K. (2011). Phase studies on the quasi-binary thallium(I) selenide-cadmium selenide system. *Thermochimica Acta*. 526(1). P. 107–110.

25. Mozolyuk, M., Piskach, L., Fedorchuk, A., Olekseyuk, I., & Parasyuk, O. (2013). The Tl₂Se–HgSe–GeSe₂ system and the crystal structure of Tl₂HgGeSe₄. *Chem. Met. Alloys.* 6. P. 55–62. https://doi.org/10.30970/cma6.0229

26. Selezen, A., Kogut, Y., Piskach, L., & Gulay, L. (2020). New Quaternary Chalcogenides $Tl_2 M^{II} M_3^{IV} Se_8$ and $Tl_3 M^{II} M^{IV} X_4$. MPDI: Proceedings. 62(1). P. 3. https://doi.org/10.3390/proceedings2020062003

27. Asadov, M., Babanly, M., & Kuliev, A. (1982). Phase equilibria and thermodynamic properties of the Hg–Tl–Se system. *Inorg. Chem.* 27, P. 3173–3178.

28. Johnsen, S., Peter, S., Nguyen, S., Song, J., Jin, H., Freeman, A., & Kanatzidis, M. (2011). $Tl_2Hg_3Q_4$ (Q = S, Se, and Te): High-Density, Wide-Band-Gap Semiconductors. *Chem. Mater.* 23. P. 4375–4383.

29. Mozolyuk, M. (2013). Fasovi rivnovahy ta vlastyvosti faz u systemakh $Tl_2X-B^{II}X-D^{IV}X_2$ i $TlC^{III}X_2-D^{IV}X_2$ ($B^{II} - Hg$, Pb; $C^{III} - Ga$, In; $D^{IV} - Si$, Ge, Sn; X - S, Se) : dys. ... kand. khim. nauk: 02.00.01 [Phase equilibria and properties of phases in the $Tl_2X-B^{II}X-D^{IV}X_2$ i $TlC^{III}X_2-D^{IV}X_2$ ($B^{II} - Hg$, Pb; $C^{III} - Ga$, In; $D^{IV} - Si$, Ge, Sn; X - S, Se systems) : thesis ... Cand. of Chem. Sci.: 02.00.01]. Uzhhorod. 250 s. [in Ukrainian].

30. Selezen, A., & Piskach, L. (2023). Fizyko-khimichna vzayemodiya v systemakh Tl₂Se–Zn(Cd)Se. VII Vseukrayinska naukova konferenciya «*Aktualni zadachi khimii: doslidzhennya ta perspektyvy*». Zhytomyr, 19 kvitnya 2023. [Physico-chemical interactions in the Tl₂Se–Zn(Cd)Se systems. VII all-Ukrainian scientific conference «*Actual problems of chemistry: research and prospects*». Zhytomyr, April 19, 2023]. S. 137–138. [in Ukrainian].

31. Filep, M., & Sabov, M. (2017). Kvasipotriyna systema Tl₂S–Tl₂Se–Tl₄PbSe₃ [Quasiternary Tl₂S–Tl₄PbSe₃ system]. *Scientific Bulletin of Uzhhorod University. Series Chemistry*. 1(37). S. 14–16. [in Ukrainian].